Improper Use of a Plant-Based Vitamin C–Deficient Beverage Causes Scurvy in an Infant

Isidro Vitoria, MD, PhD,a Berta López, MD,a Jacinto Gómez, MD,a Carolina Torres, MD,b María Guasp, MD,a Inmaculada Calvo, MD, PhD,a Jaime Dalmau, MD, PhD*a

aHospital Universitario y Politécnico La Fe, Valencia, Spain; and bPediatric Department, Hospital Elda, Alicante, Spain

Drs Vitoria, López, and Dalmau conceptualized and designed the study, and reviewed and revised the manuscript; Drs Gómez, Torres, Guasp, and Calvo drafted the initial manuscript and revised the manuscript; and all authors approved the final manuscript as submitted.

DOI: 10.1542/peds.2015-2781

Accepted for publication Oct 8, 2015

Address correspondence to Isidro Vitoria, MD, PhD, Unit of Nutrition and Metabolopathies, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell, 108, Valencia 46026, Spain. E-mail: vitoria_isi@gva.es.

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).

Copyright © 2016 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: No external funding.

POTENTIAL CONFLICT OF INTEREST: The authors have indicated they have no potential conflicts of interest to disclose.

The intake of plant-based beverages, including infant formulas, has increased in recent years, especially in developed countries. However, the use of plant-based beverages as an alternative to infant formula or breastfeeding carries nutritional risks.1 Thus, improper use of plant-based drinks has been associated with a range of nutritional deficiencies, including kwashiorkor, rickets, or failure to thrive. In particular, prolonged use of almond-based beverages has resulted in severe metabolic alkalosis due to insufficient intake of chloride, as in chloride-deficient formulas or carnitine deficiency, failure to thrive, and rickets.

On the other hand, scurvy is a rare disease in developed countries. Occurrence in the pediatric population is very low. Populations at risk include (1) elderly subjects with poor nutrition, food faddism, and/or alcoholism; (2) infants who regularly drink boiled milk; and (3) children with restricted diets, particularly those with autism and cerebral palsy.

This case report presents scurvy as a complication of exclusive use of almond beverages in the first year of life. Manufacturers should indicate that these beverages are inappropriate for infants who consume a vitamin C–deficient diet.
life, due to deficient intake of vitamin C.

CASE REPORT

The patient, 11 months old, had been tired and irritable for 1 month before examination. At 7 months of age, he could sit without support. From 8 months of age onward, he showed less interest in interacting and was more unstable when sitting. At 9 months of age, his weight was 9 kg ($z = -0.28$ DS) and his length was 68 cm ($z = -1.81$ DS). At 11 months, the child was fairly healthy but was irritable, his weight was 8.5 kg ($z = -1.23$ DS), his length was 71 cm ($z = -1.92$ DS) (Fig 1), and his blood pressure was 98/56 mm Hg. He refused to support his legs on a solid surface and he cried during passive mobility of both lower limbs. There was no joint effusion and he had no gingival bleeding.

The patient was born at term after an uneventful pregnancy (G2P2) and his birth weight was 3100 g. He was vaccinated according to the recommended Spanish guidelines. For the first 2.5 months of his life, the infant was fed with a cow’s milk–based proprietary formula, in the absence of human breast milk. At this age, the infant developed dermatitis, and for this reason, feeding was changed based on recommendations from a medical doctor. His daily intake from age 2.5 to 11.0 months was approximately 900 to 960 mL of a prepared mixture. From 6 months of age onward, the mother had offered pureed fruits and vegetables in vain. The daily mixture consisted of ~ 680 g almond drink (EcoMil Mandorla; Nutriops, SL, Murcia, Spain), 60 g almond flour (EcoMil Instant Flavor; Nutriops, SL), 20 g sesame powder (EcoMil Sesam; Nutriops, SL), a teaspoon of brown rice malt, 60 to 80 g of a cream of cereals (from brown rice and millet), and a sachet of Lactosul GG (Natysal Laboratories, Madrid, Spain) ($Lactobacillus rhamnosus$, fructooligosaccharides, and inulin). Mean energy intake during this period was 97 kcal/kg per day (Table 1).

Radiographs of the lower limbs showed osteopenia, cortical thinning, Wimberger ring, Frankel line, fracture, and periosteal reaction (Fig 2). The x-ray column showed that there were vertebral fractures and wide intervertebral spaces (data not shown).

The following laboratory data results were abnormal: zinc 64 μg/dL (65–110), thyroid-stimulating hormone 7.47 μIU/mL (0.27–4.84), 25-OH-vitamin D$_3$ 12.3 ng/mL (30–100), and ascorbic acid (AA) level <10.0 μmol/L (23–113). The following were in the normal range: sodium, potassium, chloride, magnesium, pH, bicarbonate, calcium, phosphate, alkaline phosphatase, parathyroid hormone, free T4, anti-thyroglobulin and anti-microsomal antibodies, albumin, total protein, hemoglobin, mean cell volume, serum iron, transferrine, ferritine, folic acid, vitamin B$_{12}$, and vitamin E.

Clinical, laboratory, and radiologic findings along with the nutritional history were suggestive of infantile scurvy, failure to thrive, and vitamin D insufficiency.

The child was started on oral vitamins C and D replacement therapy at respective doses of 300 mg per day and 600 UI per day for 3 months.13,14 He was fed with infant

![FIGURE 1](https://via.placeholder.com/150)

Growth chart of the patient.

| TABLE 1 Composition of Consumed Food According to the Information on the Label, per 100 g |
|---|---|---|
| Parameter | EcoMil Mandorla Beverage | EcoMil Instant Flavor | EcoMil Sesame |
| Energy, kcal | 46 | 463 | 446 |
| Lipids, g | 2.10 | 15.2 | 11.2 |
| Carbohydrates, g | 5.4 | 68 | 72 |
| Protein, g | 0.9 | 13 | 12.7 |
| Salt, g | 0.25 | 0.4 | 0.25 |
| Calcium, mg | 172 | 364 | 364 |

a No content.

The following were in the normal range: sodium, potassium, chloride, magnesium, pH, bicarbonate, calcium, phosphate, alkaline phosphatase, parathyroid hormone, free T4, anti-thyroglobulin and anti-microsomal antibodies, albumin, total protein, hemoglobin, mean cell volume, serum iron, transferrine, ferritine, folic acid, vitamin B$_{12}$, and vitamin E.

Clinical, laboratory, and radiologic findings along with the nutritional history were suggestive of infantile scurvy, failure to thrive, and vitamin D insufficiency.

The child was started on oral vitamins C and D replacement therapy at respective doses of 300 mg per day and 600 UI per day for 3 months.13,14 He was fed with infant
formula, cereals, meat, fruits, and vegetables. The daily mixture that was previously fed was stopped. Follow-up radiographs carried out 4 weeks later confirmed an improvement in radiologic features. After 45 days, plasma vitamin C, vitamin D, zinc, and thyroid-stimulating hormone levels were normalized. On follow-up visits, he showed progressive improvement in the pain in his legs and he started walking after 8 weeks.

DISCUSSION

Vitamin C, or AA, is a thermolabile and essential nutrient involved in many biological and biochemical functions. It is a potent antioxidant and a cofactor in collagen and neurotransmitter biosynthesis. In the first year of life, the recommended dietary allowance is 50 to 60 mg per day. The recommended content of vitamin C in formula is 10 to 30 mg per 100 kcal and the content of breast milk in European women is 63 ± 14 mg/kg. Fruits such as oranges, strawberries, and kiwis contain 60 to 100 mg/100 g. Therefore, as applied to this particular pediatric case, complementary feeding with fruits and formula or breast milk could have helped to meet AA needs. It is important to note that during the industrial processing of almond beverages, thermolabile vitamins like AA lose their biological activity. Some plant-based beverages in Spain are supplemented with calcium, magnesium, vitamins D, B12, and E. The consequences of nonexclusive use of such plant-based beverages in infant feeding depend on the quantities consumed and eventual compensation of nutrients from other foods in the diet. An analysis of the actual nutrition intake as reported by the mother is presented in Table 2. The intake of calcium, iron, zinc, and vitamins C and D was much lower than the corresponding dietary allowances for that age.

Signs of scurvy develop after 1 to 3 months of insufficient intake of AA. In this patient, at the age of 7 to 8 months, old motor regression signs appeared, and 1 to 3 months later there was failure to thrive, in

<table>
<thead>
<tr>
<th>TABLE 2 Daily Intake of the Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient’s Daily Intake Before Vitamin Replacement Therapy</td>
</tr>
<tr>
<td>Energy, kcal</td>
</tr>
<tr>
<td>Protein, g</td>
</tr>
<tr>
<td>Carbohydrate, g</td>
</tr>
<tr>
<td>Fat, g</td>
</tr>
<tr>
<td>Calcium, mg</td>
</tr>
<tr>
<td>Phosphorus, mg</td>
</tr>
<tr>
<td>Iron, mg</td>
</tr>
<tr>
<td>Magnesium, mg</td>
</tr>
<tr>
<td>Zinc, mg</td>
</tr>
<tr>
<td>Iodine, μg</td>
</tr>
<tr>
<td>Vitamin C, mg</td>
</tr>
<tr>
<td>Vitamin D, μg</td>
</tr>
</tbody>
</table>

^a AI, adequate intake according to Food and Nutrition Board, Institute of Medicine; RDA, recommended dietary allowances.

FIGURE 2

The anteroposterior view of bilateral lower limbs shows osteopenia, cortical thinning, a white line around the epiphyses (Wimberger ring) (white arrows) and metaphyses (Frankel line) (black arrows), fracture of the distal left femur (curved black arrow), and periosteal reaction in the right femur (curved white arrow).
addition to pathologic fractures at the age of 11 months. Some signs of scurvy result from decreased synthesis of collagen. Although the manifestations of scurvy are highly variable, bone disease is much more frequent in children than in adults. Hemorrhages occurring beneath the periosteum are much more frequent in children than in adults. Hemorrhages occur in children.26 In addition to fractures and subperiosteal hematomas, the radiologic features in the present case report are typical of scurvy: osteopenia, cortical thinning, Wimberger ring, and metadiaphyseal fraying.27 The diagnosis of scurvy is based on clinical findings, and the response to treatment. Infants and children are usually treated with 100 to 300 mg daily for 1 to 4 months.13

CONCLUSION AND RECOMMENDATION

This case presents scurvy as a new and severe complication of improper use of almond beverage in the first year of life. Pediatricians and parents should be aware that plant-based beverages are not a complete food and they may not replace breastfeeding or infant formula.

ABBREVIATION

AA: ascorbic acid

REFERENCES

Improper Use of a Plant-Based Vitamin C–Deficient Beverage Causes Scurvy in an Infant

Isidro Vitoria, Berta López, Jacinto Gómez, Carolina Torres, María Guasp, Inmaculada Calvo and Jaime Dalmau

Pediatrics; originally published online January 18, 2016;
DOI: 10.1542/peds.2015-2781
Improper Use of a Plant-Based Vitamin C–Deficient Beverage Causes Scurvy in an Infant

Isidro Vitoria, Berta López, Jacinto Gómez, Carolina Torres, María Guasp, Inmaculada Calvo and Jaime Dalmau

Pediatrics; originally published online January 18, 2016;
DOI: 10.1542/peds.2015-2781

The online version of this article, along with updated information and services, is located on the World Wide Web at:
/content/early/2016/01/15/peds.2015-2781.full.html